The Landscape of Adaptive Evolution of a Gut Commensal Bacterium in Aging Mice

Hugo C. Barreto¹, Ana Sousa² and Isabel Gordo¹

¹Instituto Gulbenkian de Ciência, Oeiras, Portugal
²iBiMed, Institute for Biomedicine, Universidade de Aveiro, Aveiro, Portugal
Gut microbiota development during life

During aging
- Decline in immune system functioning (*Immunosenescence*)
- Low level of chronic *inflammation*
- *Dysbiosis* of the gut microbiota

Core microbiota

Subdominant taxa

Bacteroidaceae

Lachnospiraceae

Ruminococcaceae

...

Odoribacter

Oscillospira

Enterobacteriaceae

...

Biagi 2016, Kundu 2017, Vaiserman 2017, Nagpal 2018
Gut microbiota and aging

- Immunosenesence
- Increased inflammation
- Decline of host functions
- Changing gut ecological environment
- Dysbiosis
- Improper surveillance at the host-microbe interface

Aleman 2019
Gut microbiota and aging

Is the **evolution** of a **bacterial species** different in **old mice**?

Mutagenic / Stressful environment ➔ Increased number of mutations?
How can we study evolution in the gut?

- Streptomycin treatment
- Fecal sample collection
- Gavage with *E. coli*
- 1:1 mixture of YFP / CFP

Emergence of 1 beneficial mutation in YFP background

Emergence of beneficial mutations in both backgrounds: Clonal Interference

Hegreness et al 2006, Barroso-Batista et al 2014

@hugocbarreto
E. coli evolution in young animals

Rapid adaptation of *E. coli* to the gut of **young animals** and **high level** of **parallelism** (acquisition *gat*-negative phenotype)

Regime of **intense clonal interference**, haplotypes compete for fixation

Barroso-Batista et al 2014

@hugocbarreto
Old mice show higher levels of inflammation

Frailty Index

Frailty index is increased and variable amongst old mice

Young: 2 months, Old: 18 months
Mann-Whitney, ** p < 0.01
Old mice show higher levels of inflammation

Frailty Index

- Young: 2 months, Old: 18 months

Systemic inflammation

- Mann-Whitney, **p < 0.01**

Frailty index is increased and variable amongst old mice
Old mice show higher levels of inflammation

Frailty Index Systemic inflammation Gut inflammation

Frailty index is increased and variable amongst old mice

Systemic / Gut Inflammatory environment that can potentially affect *E. coli* evolution

Young: 2 months, Old: 18 months
Mann-Whitney, ** p < 0.01
Old mice have a distinct microbiota composition

Class level

![Graph showing microbiota composition before and after treatment](image)

Differentely represented taxa between young and old mice

Before treatment: 17 taxa

After treatment: 3 taxa

After antibiotic treatment and colonization with E. coli, the **differences** in microbiota composition **became less pronounced** but **still persisted.**

Young: 2 months, Old: 18 months

@hugocbarreto
E. coli evolves rapidly in the gut of old mice

Markers diverge around the same time as in young animals

E. coli evolves as rapidly as in young animals

Young: 2 months, Old: 18 months
The spread of loss of ability to consume galactitol is delayed in old mice

Other beneficial mutations may be occurring earlier

Young: 2 months, Old: 18 months
Mann-Whitney, * p < 0.05, ** p < 0.01, *** p < 0.001
The mutational landscape is different between young and old mice

A small percentage of *E. coli* adaptive targets are common between young and old mice.

Mice cluster by age (*p* = 0.002), supporting that the mutational landscape is different.
Mutations observed in *E. coli* are due to selection.

Number of mutations

- Number of segregating mutations per animal is **higher** in old mice.

Young: 2 months, Old: 18 months
Mutations observed in *E. coli* are due to selection

Number of segregating mutations per animal is higher in old mice.

No differences in the mean mutation rate
Mutations observed in *E. coli* are due to selection.

Number of mutations

Number of segregating mutations per animal is **higher** in **old** mice.

Mutation rate in vivo

No differences in the mean mutation rate

Negative correlation between mutation rate and number of mutations

Young: 2 months, Old: 18 months
Signature of *E. coli* evolution in old mice: Stress response
Signature of *E. coli* evolution in old mice: Stress response

Involved in metabolism

Young: 2 months, Old: 18 months

@hugocbarreto
Signature of *E. coli* evolution in old mice: Stress response

Young: 2 months, Old: 18 months
Signature of *E. coli* evolution in old mice: Stress response

- Young: 2 months, Old: 18 months

Involvement in metabolism
- *focA/ycaO*
- *kdgR*
- *dcuB/dcuR*
- *srlR*
- *tdcA/tdcR*
- *gat-operon*

Phosphate Starvation
- *ddlA/iraP*
- *mngB/cydA*
- *puuE*
- *lrhA*
- *iscR*
- *selA*
- *spoT*

Nitric oxide stress
- *Osmotic and heat stress*
High levels of Zinc(II)
- *Oxidative stress*
- *Stringent response*
- *Iron homeostasis*

@hugocbarreto
Strong selection dominates the evolutionary process of *E. coli* in the aging gut

iscR dynamics

iscR emerges at the same time as the *gat*-negative phenotype (Day 2)

iscR has an estimated selective effect of 17% per generation, measured from 2-4 days

Young: 2 months, Old: 18 months
Strong selection dominates the evolutionary process of *E. coli* in the aging gut

IrhA dynamics

IrhA selective effect at least as high as that of the *gat*-negative phenotype (~7% per generation)
Selection for motility during the evolutionary process of *E. coli* in the aging gut

Unpaired t-test, *p < 0.05, **p < 0.01, ***p < 0.001.
Summary

Rapid evolution of E. coli

Young mice
- **Rapid emergence and Strong selection for gat-negative**
- Targets metabolism genes

Old mice
- **Delayed emergence of gat-negative**
- Targets mostly stress response genes
- **Strong selection for iscR and lrhA**
- **Selection for motility**
Acknowledgments

Supervisor
– Isabel Gordo, IGC

Co-Supervisor
– Ana Margarida Sousa, iBiMED Uni Aveiro

IGC Rodent Facility
IGC Genomics Unit

Evolutionary Biology Group

INSTITUTO GULBENKIAN DE CIÊNCIA

FCT Fundação para a Ciência e a Tecnologia
ONEIDA AN OMICS NETWORK

Lisboa2020 Portugal 2020 EUA