THE SILVER LINING OF CYANOBACTERIA – the case of phycocyanin

Objectives

In the environment cyanobacteria can form blooms that can be responsible for many problems. However, cyanobacteria can be used to extract high-value products, and can be applied in several fields (e.g. nutraceuticals, aquaculture, bioenergy). Among these products is phycocyanin (PC), a blue pigment mainly found in cyanobacteria, with high market value and many applications.

1- CYANOBACTERIA PRODUCTION

• Cyanobacteria Spirulina platensis, Anabaena cylindrica, and Nostoc sp., were cultured under controlled conditions.
 - 26 ± 2 °C; photoperiod: 16h-L/8h-D; 2000 lux

2- PC EXTRACTION

• PC was recovered using 150 mM sodium phosphate buffer pH 7 in a solid-liquid extraction

After precipitation with ammonium sulfate and ultrafiltration

3- BIOLOGICAL ACTIVITY OF PC EXTRACTS

• Antioxidant activity was assayed by the ABTS method, using ascorbic acid (AC) as a positive control.

ABTS

• Antimicrobial activity was assayed by the Kirby-Bauer Disk Diffusion test.

Gram-negative
 - Escherichia coli
 - Pseudomonas aeruginosa

Gram-positive
 - Staphylococcus aureus
 - Bacillus cereus

HaCaT 72h

• Biocompatibility was assayed in human keratinocytes (HaCat), through the cell viability assay (MTT).

Conclusions

- Under the tested conditions, Nostoc sp. was the best PC producer.
- None of the tested extracts showed antimicrobial activity.
- Raw extracts presented better results than purer ones. These extracts showed high antioxidant activity, higher than the positive control, ascorbic acid, as well as a good biocompatibility in skin cells.

Acknowledgments

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MCTES and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. Thanks are due to FCT/MCTES for the financial support to (UIDP/50017/2020+UIDB/50017/2020), through national funds. The authors also thank FCT for the project (PTDC/BTA-BTA/30914/2017) and to J.L. Pereira who is funded by national funds (OE) through FCT, under a framework contract (art. 23, Decree-Law 57/2017, changed by Law 57/2017); I.P.E. Macário (SFRH/BD/123850/2016), M. Martins (SFRH/BD/122220/2016), T. Veloso (B/1/U89/8664/2019), and A.P.M. Fernandes (PTDC/BTA-BTA/30914/2017) are recipients of individual research grants by FCT financed by the FCT/MEC and co-financed by FEDER program. H. Oliveira acknowledges FCT/MCTES for research contract under the Program ‘Stimulus to Scientific Employment’ (CEECIND/04050/2017).

References